


1. Introduction

- Proposed:
- -novel dynamic Bayesian nonparametric topic model
- -batch and online Gibbs sampler for inference
- -abnormality measure

3. Hierarchical Dirichlet process

Word assignment to table (lower-level DP):

 $-n_{jt}$ is the number of words assigned to the table t in the document j, $-\alpha$ is the parameter of the lower-level DP

$$p(t_{ji} = t | t_{j1}, \dots, t_{ji-1}, \alpha) = \begin{cases} \frac{n_{jt}}{i - 1 + \alpha}, & \text{if } t = 1 : m_{j}; \\ \frac{\alpha}{i - 1 + \alpha}, & \text{if } t = t^{\text{new}} \end{cases}$$

Topic assignment for table (upper-level DP):

Glol		<u>αγ</u>	¢¢, m, _v	
рор	·····	<u>∝γ</u>	\sim	
		, v		
	$(\mathbf{\Phi}_{new})$	$\begin{pmatrix} \mathbf{\phi}_3 \end{pmatrix}$	(Φ_2)	$ \diamond (\Phi_1)$
			v	

 $-m_{k}$ is the number of tables having the topic k among all the documents, $-\gamma$ is the parameter of the upper-level DP

$$p(k_{jt^{\text{new}}} = k | k_{11}, \dots, k_{jt-1}, \gamma) = \begin{cases} \frac{m_{\cdot k}}{m_{\cdot \cdot} + \gamma}, & \text{if } k = 1 : K; \\ \frac{\gamma}{m_{\cdot \cdot} + \gamma}, & \text{if } k = k^{\text{new}} \end{cases}$$

ANOMALY DETECTION IN VIDEO WITH BAYESIAN NONPARAMETRICS

Olga Isupova, Danil Kuzin, Lyudmila Mihaylova Department of Automatic Control and Systems Engineering, University of Sheffield, UK

$$\frac{|\mathbf{x}_{j}, \mathbf{x}_{1:j-1})}{\mathbf{k}_{1:j}, \mathbf{x}_{1:j-1}} \right)^{-1} \approx \left(\frac{1}{S} \sum_{s=1}^{S} \frac{1}{p(\mathbf{x}_{j} | \mathbf{t}_{1:j}^{s}, \mathbf{k}_{1:j}^{s}, \mathbf{x}_{1:j-1})}\right)$$
(4)

(d) Disruption in traf-