1. Introduction

e Advantages of topic modeling for anomaly detection: probabilistic framework, dis-
covering typical activities in addition to normal/abnormal labeling, expandable
e Proposed:

—novel dynamic Bayesian nonparametric topic model
—batch and online Gibbs sampler for inference

—abnormality measure

3. Hierarchical Dirichlet process
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Fig. 1: Word level Chinese Restaurants
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Topic assignment for table (upper-level DP):
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Fig. 2: Topic level Chinese Restaurant for the HDP
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—m.;. is the number of tables having the topic £ among all the documents,

— v is the parameter of the upper-level DP
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2. Visual Features
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Fig. 3: From an input frame an optical flow is calculated; the optical flow is averaged within the grid cells and quantised

into four directions to get visual words; non-overlapping clips are treated as documents.

4. Dynamic Hierarchical Dirichlet Process

Word to table assignment remains the same (Figure 1 and Eq. (1)).
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Fig. 4: Topic level Chinese Restaurant for the dynamic HDP

—my and m;_;, 1s the number of tables having the topic & in the current and previous
documents respectively;,
— 0 is the parameter of the dynamic HDP, governing the influence of the old topics
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5. Inference
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6. Anomaly detection procedure

Abnormality measure = predictive likelihood:
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— 5 is the number of the posterior samples,

—t7; and k7., are from the s-th posterior sample obtained by the Gibbs sampler

7. Numerical experiments

The proposed method is compared with the one, based on the conventional HDP
model, both on synthetic and real data.
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Fig. 6: QMUL-junction real dataset snapshots: normal motion and three abnormal examples.

(a) Normal motion (b) Jay-walking

sample rection

I}OC-lel"V 1 ROC-curves on QMUL data

0.4 0.5 . . . . . . . .
False positive rate False t

Synthetic data QMUL-junction real data
Fig. 7. ROC-curves for anomaly detection. For the synthetic data there is also the ROC-curve for the “true” model, i.e.
the model with the true topics ¢, and the true table and topic assignments t and k. This model represents the one that

can perfectly restore all the latent variables.

8. Conclusions

A novel Bayesian nonparametric dynamic topic model is proposed. Empirical re-
sults prove consideration of dynamics in topic modeling improves anomaly detection

performance.
Future work includes further dynamics development and anomaly localisation.




