Uncertainty propagation in neural networks FOR SPARSE CODING

Danil Kuzin*, Olga Isupova[†], Lyudmila Mihaylova*

*University of Sheffield, UK †University of Oxford, UK

1. LISTA

Estimate $\boldsymbol{\beta}$ from observations \mathbf{y} collected as $\mathbf{y} =$ $X\beta + \varepsilon$, s.t. elements β contain zeros.

LISTA [G&L]

- Represent iterative soft-thresholding algorithm as RNN with shared weights
- Learn weights with BPTT

No uncertainty estimation

Init. Dense $\mathbf{b} \leftarrow \mathbf{W}\mathbf{y}$ Init. Soft-thresholding $\widehat{\beta}_0 \leftarrow h_{\lambda}(\mathbf{b})$ for l = 1 to L do Dense $\mathbf{c}_l \leftarrow \mathbf{b} + \mathbf{S}\widehat{\boldsymbol{\beta}}_{l-1}$ Soft-thresholding $\widehat{\boldsymbol{\beta}}_l \leftarrow h_{\lambda}(\mathbf{c}_l)$ end for $\mathbf{return} \ \ \widehat{\boldsymbol{\beta}} \leftarrow \widehat{\boldsymbol{\beta}}_L$

3. Uncertainty propagation

At every step the output of soft-thresholding can be closely approximated with the spike and slab distribution

1. $\mathbf{b} = \mathbf{W}\mathbf{y}$ is Gaussian-distributed

2. $\hat{\boldsymbol{\beta}}_0 = h_{\lambda}(\mathbf{b})$ is approximated with the spike and slab distribution

3. $\mathbf{e}_l = \mathbf{S}\hat{\boldsymbol{\beta}}_{l-1}$ is approximated with the Gaussian distribution

4. $\mathbf{c}_l = \mathbf{b} + \mathbf{e}_l$ is Gaussian-distributed

5. $\hat{\boldsymbol{\beta}}_l = h_{\lambda}(\mathbf{c}_l)$ is approximated with the spike and slab distribution

All latent variables are modelled with parametrised distributions We can apply approximate Bayesian inference methods

6. References

[HL&A] J. M. Hernández-Lobato, R. Adams. Probabilistic backpropagation for scalable learning of Bayesian neural networks. ICML 2015.

[G&L] K. Gregor, Y. LeCun. Learning fast approximations of sparse coding. ICML 2010.

2. BayesLISTA

• Add priors for NN weights

$$p(\mathbf{W}) = \prod_{d=1}^{D} \prod_{k=1}^{K} \mathcal{N}(w_{ij}; 0, \eta^{-1}), \quad p(\mathbf{S}) = \prod_{d'=1}^{D} \prod_{d''=1}^{D} \mathcal{N}(s_{d'd''}; 0, \eta^{-1}),$$

- Propagate distribution for $\widehat{\boldsymbol{\beta}}$ through layers
- Compute prediction as noisy NN output

$$p(\boldsymbol{eta}|\mathbf{y},\mathbf{W},\mathbf{S},\gamma,\lambda) = \prod_{d=1}^{D} \mathcal{N}\left(eta_d; [f(\mathbf{y};\mathbf{S},\mathbf{W},\lambda)]_d, \gamma^{-1}
ight)$$

• Update weights with PBP

4. BackProp-PBP

Approximate posterior

$$q(\mathbf{W}, \mathbf{S}, \gamma, \eta) = \prod_{d=1}^{D} \prod_{k=1}^{K} \mathcal{N}(w_{dk}; m_{dk}^{w}, v_{dk}^{w}) \prod_{d'=1}^{D} \prod_{d''=1}^{D} \mathcal{N}(s_{d'd''}; m_{d'd''}^{s}, v_{d'd''}^{s})$$

$$\times \operatorname{Gam}(\gamma; a^{\gamma}, b^{\gamma}) \operatorname{Gam}(\eta; a^{\eta}, b^{\eta})$$

Probabilistic backpropagation [HL&A]: use derivatives of the logarithm of a normalisation constant to update weight distributions

$$q(a) = Z^{-1}f(a)\mathcal{N}(a; m, v)$$

$$Z \approx \prod_{d=1}^{D} \left[\omega_d^{\widehat{\beta}} \mathcal{T}(\beta_d; 0, \beta^{\gamma}/\alpha^{\gamma}, 2\alpha^{\gamma}) + \left(1 - \omega_d^{\widehat{\beta}} \right) \mathcal{N}\left(\beta_d; m_d^{\widehat{\beta}}, \beta^{\gamma}/(\alpha^{\gamma} - 1) + v_d^{\widehat{\beta}} \right) \right],$$

where $\{\omega_d^{\widehat{\beta}}, m_d^{\widehat{\beta}}, v_d^{\widehat{\beta}}\}$ are the parameters of the spike and slab distribution for $[\widehat{\beta}]_d$.

5. Results

Synthetic

Different depth performance

Different observation size performance

MNIST

Posterior mean and spike indicator for an image of digit 7

Samples from the posterior for an image of digit 7

Active Learning Use the estimated uncertainty to choose next training data with largest variance

Sequential pool additions