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1. LISTA 2. BayesLISTA

Estimate 3 from observations y collected as y = e Add priors for NN weights

X3 + g, s.t. elements B contain zeros. D K » D D »
p(W): HHN(wZJJOan )7 p(S): H HN(Sd’d”;O777 )7
d=1 k=1 d=1d'=1

LISTA [G&L] e Propagate distribution for 8 through layers

e Represent iterative soft-thresholding algorithm

: : D
as NN with shared welghts p(Bly, W,S,7,\) = TN (B [f(y:S, W, Ny )
e Learn weights with BPT'T d=1

Init. Dense b <~ Wy
Init. Soft-thresholding B < h)(b)
for/=1to Ldo
Dense ¢; <~ b+ S3;_
Soft-thresholding B; < h(c;) 4. BaCkPrOp-PBP
end for
return 3+ G1

e Compute prediction as noisy NN output

e Update weights with PBP

Approximate posterior

Overfitting

D K D D
No uncertainty estimation q(W,S,v,n) = H H N (war; Mgy, vgi.) H H N (sarar; My gn, V)
d=1 k=1 d'=1 d"=1

x Gam(~y;a’,07)Gam(n; a", b")

Probabilistic backpropagation [HL&A]: use derivatives of the logarithm of a normalisation
constant to update weight distributions

3. Uncertainty propagation 0(a) = Z7 F(a)N (a:m, v)
7 =~ ﬁ

At every step the output of soft-thresholding can be closely approximated with the spike i

d
and slab distribution 3

. . L where {w;
1. b = Wy is Gaussian-distributed

/ \ 5. Results
i /\ Synthetic

AN

,m? 1P} are the parameters of the spike and slab distribution for [3],.

2. Bo = h)(b) is approximated with the spike and slab distribution

SN~

3.e = SBl_l is approximated with the Gaussian distribution
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Different observation size performance
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/ \ ( ) / \ Posterior mean and spike indicator for an image of digit 7

5. Bz = hy(c;) is approximated with the spike and slab distribution F
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All latent variables are modelled with parametrised distributions Samples from the posterior for an image of digit 7

We can apply approximate Bayesian inference methods Active Learning Use the estimated uncertainty to choose next training data with largest
varliance

4.c; = b + e; is Gaussian-distributed
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