

DISCOVERING DYNAMIC TOPIC TRANSITIONS IN TOPIC MODELS Olga Isupova¹, Danil Kuzin², Lyudmila Mihaylova² ¹ University of Oxford, ² University of Sheffield, UK

1. Motivation

Consider topic modeling of dynamic data

document j-1

3. DP with HDP-HMM prior

Global topic probability $\begin{aligned} \boldsymbol{\beta} | \boldsymbol{\gamma} \sim \operatorname{GEM}(\boldsymbol{\gamma}) \\ \text{Topic transition distributions} \\ \boldsymbol{\pi}_k | \boldsymbol{\lambda}, \boldsymbol{\kappa}, \boldsymbol{\beta} \sim \operatorname{DP}\left(\boldsymbol{\lambda} + \boldsymbol{\kappa}, \frac{\boldsymbol{\lambda} \boldsymbol{\beta} + \boldsymbol{\kappa} \boldsymbol{\delta}_k}{\boldsymbol{\lambda} + \boldsymbol{\kappa}}\right) \quad \forall k \\ \text{Mixture weights for each document} \\ \boldsymbol{\mu}_j | \mathcal{K}_{j-1}, \boldsymbol{\varepsilon} \sim \operatorname{Dir}_{\mathcal{K}_{j-1}}(\boldsymbol{\varepsilon}) \quad \forall j \\ \text{Base measure for each document} \\ \boldsymbol{G}_j = \sum \mu_{jk} \boldsymbol{\pi}_k \quad \forall j \end{aligned}$

Assumption:

Topics in the current document depend on topics from the previous document Topics follow latent transitional rules

Graph model for DP with HDP-HMM prior

 $\mathcal{J}_{j} = \sum_{k \in \mathcal{K}_{j-1}} \mu_{jk} \mathbf{\Lambda}_{k} \quad \forall J$

Each document as a topic mixture

 $\boldsymbol{\rho}_j | \alpha, G_j \sim \mathrm{DP}(\alpha, G_j) \quad \forall j$

Distribution over words for topic l

$$\boldsymbol{\phi}_l \sim H = Dir(\boldsymbol{\eta}) \quad \forall l$$

Topic and word assignments for each token

 $\begin{aligned} z_{ji} | \boldsymbol{\rho}_{j} \sim \boldsymbol{\rho}_{j} \quad \forall i, j \\ x_{ji} | z_{ji}, \{ \boldsymbol{\phi}_{l} \}_{l=1}^{\infty} \sim F(\boldsymbol{\phi}_{z_{ji}}) = Mult(\boldsymbol{\phi}_{z_{ji}}) \quad \forall i, j \end{aligned}$

2. Visual features

(a) Visual word extraction
(b) Visual documents
From an input frame an optical flow is calculated; the optical flow is averaged within the grid cells and quantised into four directions to get *visual words*; non-overlapping clips are treated as *documents*.

5. Topic structures learnt by the model

4. Inference

A novel **ancestor** Gibbs sampler is developed (based on CRF representation)

Gibbs sampling for DP with HDP-HMM prior

Input: observed words \mathbf{x} , the number M of burn-in iterations

- 1: for m = 1 to M do
- 2: Sample global topic probabilities $\boldsymbol{\beta}$;
- 3: Sample topic transition probabilities $\boldsymbol{\pi}_k, \forall k;$
- 4: Sample table assignments t_{ji} for each word, $\forall j, i$;
- 5: Sample topic ancestor assignments k_{jt} for each table $t, \forall j, t$; 6: Sample topic assignments z_{jt} for each table $t, \forall j, t$ 7: end for

+ no complex dependences on future observations

+ truncation-free

+ linear time complexity

MC

Diagram of learnt topic dynamics on the QMUL data

6. Quantitative comparison

Diagram of learnt topic dynamics on the Idiap data

HDP-HN

Vanilla_

Perplexity results

References

QMUL data, MCTM – T. Hospedales, S. Gong, and T. Xiang. Video behaviour mining using a dynamic topic model. International Journal of Computer Vision, 2012

Idiap data – J. Varadarajan and J.-M. Odobez. Topic models for scene analysis and abnormality detection. In Proceedings of ICCV Workshops, 2009

DDP-HMM – D. Kuettel, M. D Breitenstein, L.V. Gool, and V. Ferrari. What's going on? Discovering spatio-temporal dependencies in dynamic scenes. In Proceedings of CVPR, 2010

Dynamic HDP – O. Isupova, D. Kuzin, and L. Mihaylova. Dynamic hierarchical Dirichlet process for abnormal behaviour detection in video. In Proceedings of FUSION, 2016

Vanilla HDP – Y. W. Teh, M. I Jordan, M. J Beal, and D. M Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 2006