DISCOVERING DYNAMIC TOPIC TRANSITIONS IN Toric MODELS
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1. Motivation 3. DP with HDP-HMM prior

Consider topic modeling of dynamic data
Global topic probability
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Topic transition distributions
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Topic and word assignments for each token
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o Graph model for DP with HDP-HMM prior
2. Visual features ’ p

4. Inference

1 sec length clip N

(a) Visual word extraction (b) Visual documents

From an input frame an optical flow is calculated; the optical flow is averaged within the grid cells and quantised into four : : :
. 5 A novel ancestor Gibbs sampler is developed (based on CRF representation)

directions to get visual words; non-overlapping clips are treated as documents.

Gibbs sampling for DP with HDP-HMM prior
Input: observed words x, the number M of burn-in iterations

5. Topic structures learnt by the model . for m = 1 to M do +no complex dependences on
2. Sample global topic probabilities 3; future observations
3. Sample topic transition probabilities 7., Vk; + truncation-free
4 Sample table assignments ¢ ; for each word, Vy, i;
5 Sample topic ancestor assignments kj; for each table ¢, Vj, ¢; linear time complexity
6:  Sample topic assignments z;; for each table ¢, Vj, ¢
7. end for

6. Quantitative comparison
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Perplexity results
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Diagram of learnt topic dynamics on the Idiap data



